Smart fields: model-based control and optimisation of subsurface flow Jan-Dirk Jansen, Delft University of Technology

100 Years and Beyond, Imperial College 2013

Research & development drivers

- Increasing demand; reducing supply
 - energy demand continues to grow world-wide
 - renewables are developing too slow to keep up with demand
 - 'easy oil' has been found; few new discoveries; complex fields
- => produce more from existing reservoirs
- Increasing knowledge- and data intensity
 - more sensors: pressure/temperature/flow, time-lapse seismics, passive seismics, EM, tilt meters, remote sensing, ...
 - more control: multi-lateral wells, smart wells, snake wells, dragon wells, remotely controlled chokes, ...
 - more modeling capacity: computing power, visualization

=> use a model-based systems and control approach

Closed-loop reservoir management

- Hypothesis: recovery can be significantly increased by changing reservoir management from a 'batch-type' to a near-continuous model-based controlled activity
- Key elements:
 - Optimisation under geological uncertainties
 - Data assimilation for frequent updating of system models
- Inspiration:
 - Systems and control theory
 - Meteorology and oceanography
- A.k.a. real-time reservoir management, quantitative reservoir management, computer-assisted reservoir management, smart fields, intelligent fields, ...

Closed-loop reservoir management

CLRM perspectives

Geoscience-focused

- Maximize subsurface knowledge
- Relevant for field development planning
- Geological model(s) at the core

Production-focused

- Maximize financial outcome
- Relevant for surveillance and intervention
- Flow model(s) at the core

CLRM perspectives

Geoscience-focused

- Maximize subsurface knowledge
- Relevant for field development planning
- Geological model(s) at the core

Production-focused

- Maximize financial outcome
- Relevant for surveillance and intervention
- Flow model(s) at the core

Open-loop flooding optimisation

100 Years and Beyond, Imperial College 2013 7

Optimisation techniques

- Global versus local
- Gradient-based versus gradient-free
- Constrained versus non-constrained
- 'Classical' versus 'non-classical' (genetic algorithms, simulated annealing, particle swarms, etc.)
- We use 'adjoint-based optimal control theory'
 - Gradient-based local optimum
 - Computational effort independent of number of controls
 - Objective function: ultimate recovery or monetary value
 - Controls: injection/production rates, pressures or valve openings
 - Beautiful, but code-intrusive and requires lots of programming

Anyway, the magic isn't in the method

12-well example

- 3D reservoir
- High-permeability channels
- 8 injectors, rate-controlled
- 4 producers, BHP-controlled
- Production period of 10 years
- 12 wells x 10 x 12 time steps gives 1440 optimization parameters
- Optimisation of monetary value J

Van Essen et al., 2006

J = (value of oil – costs of water produced/injected)

12-well example

12-well example

Why this wouldn't work

- Real wells are sparse and far apart
- Real wells have more complicated constraints
- Field management is usually production-focused
- Long-term optimisation may jeopardize short-term profit
- Optimal inputs cannot be implemented (too dynamic)
- Production engineers don't trust reservoir models anyway
- We do not know the reservoir!

Robust optimisation

Robust optimization

• Use ensemble of realizations (typically 100)

Van Essen et al., 2006

- Optimize expected value over ensemble
- Single strategy, not 100!
- If necessary include risk aversion (utility function)
- Computationally intensive

Robust optimisation results

TUDelft

3 control strategies applied to set of 100 realisations: reactive control, nominal optimisation, robust optimisation

100 Years and Beyond, Imperial College 2013 15

Computer-assisted history matching

Computer-assisted history matching (data assimilation)

- Uncertain parameters: permeabilities, porosities, fluid properties, aquifers, fault positions, horizon depths ...
- Data: production (oil, water, pressure), 4D seismics, ...
- Very ill-posed problem: many parameters, little info
- Variational methods Bayesian framework:
- Ensemble Kalman filtering sequential methods
- Reservoir-specific methods (e.g. streamlines)
- 'Non-classical' methods simulated annealing, GAs, …
- Monte Carlo methods MCMC with proxies

Also here, the magic isn't in the method

Example, Brugge field

- Brugge field
 (SPE workshop on CLRM)
- 10 water injectors
- 20 smart producers
- Production data until 10 yrs
- '4D seismics' after 5 and 10 years
- 104 prior models (we used 9)
- Optimisation over remaining 20 years
- Question: effect of adding 4D seismics on production forecast?
- Measures: root-mean squared difference between historic (10 yrs) and future (20 yrs) production data (oil, water rates)

Conventional history matching

Optimization of 'smart' horizontal wells

Answer (joint TU Delft – Shell research): Combine-large scale reservoir simulation with adjoint-based optimisation.

Question from Shell: How to optimise the valve settings over time for a 'smart' horizontal water injection well?

TUDelft

Base case results

- Grouping based on geological features
- Cumulative oil production: 11,47 MMstb

Alternative 4-group control

- Cumulative oil production: 12,62 MMstb
- Increase of 10,0% (1,15 MMstb)

System-theoretical concepts

- Controllability of a dynamic system is the ability to influence the states through manipulation of the inputs.
- Observability of a dynamic system is the ability to determine the states through observation of the outputs.
- Identifiability of a dynamic system is the ability to determine the parameters from the input-output behavior.
- Well-defined theory for linear systems. More difficult for nonlinear ones.

- Controllability, observability and identifiability are very limited
- Reservoir dynamics 'lives' in a state space of a much smaller dimension than the number of model grid blocks
- Linear case (pressures only): typical number of relevant pressure states: 2 x # of wells
- For fixed wells: the (few) identifiable parameter patterns correspond just to the (few) controllable state patterns
- Scope for reduced-order modeling to speed up iterative optimisation, history matching, upscaling?
 - First attempts: POD disappointing speed-ups
 - Successful: TPWL (Durlofsky et al.)
 - Other approaches: DEIM, sparse representations, ... in progress

- Controllablity, observability and identifiability are very limited
- Reservoir dynamics 'lives' in a state space of a much smaller dimension than the number of model grid blocks
- Linear case (pressures only): typical number of relevant pressure states: 2 x # of wells
- For fixed wells: the (few) identifiable parameter patterns correspond just to the (few) controllable state patterns

So, do we still need geology?

Yes, we very much need geology!

100 Years and Beyond, Imperial College 2013 31

Yes, we very much need geology!

- Interpreting the 'history matched' results requires geological insight
- Understanding optimisation results also requires geological insight
- Well location-optimisation requires a geological model
- However, we need to focus on the relevant geology:
 - Which geological features are identifiable?
 - Which geological features influence controllability?

Conclusions, questions, more work

- Specific optimisation methods less important than workflow & human interpretation of results
- Use of multiple models to capture uncertainties is essential
- Reservoir dynamics lives in low-order space so what?
- Control-relevant geology how do we define it?
- Developments: well location/trajectory optimisation, infill drilling scheduling, EOR optimisation, big loop, model maturation, structural uncertainties, multiple data sources (4-D seismics, gravity, EM, passive seismics, ...)

Acknowledgments

Collaborators:
 Okko Bosgra†
 Arnold Heemink
 Paul Van den Hof

and many other colleagues and students of

- TU Delft Department of Geoscience and Engineering
- TU Delft Delft Center for Systems and Control
- TU Delft Delft Institute for Applied Mathematics
- TU Eindhoven Department of Electrical Engineering
- TNO Built Environment and Geosciences
- Sponsors: Shell (Recovery Factory program) ENI, Petrobras, Statoil (ISAPP program)

Questions?

www.citg.tudelft.nl/smart

100 Years and Beyond, Imperial College 2013 35