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Research & development drivers
• Increasing demand; reducing supply

• energy demand continues to grow world-wide
• renewables are developing too slow to keep up with demand
• ‘easy oil’ has been found; few new discoveries; complex fields

=> produce more from existing reservoirs

• Increasing knowledge- and data intensity 
• more sensors: pressure/temperature/flow, time-lapse

seismics, passive seismics, EM, tilt meters, remote sensing, …
• more control: multi-lateral wells, smart wells,

snake wells, dragon wells, remotely controlled chokes, … 
• more modeling capacity: computing power, visualization 

=> use a model-based systems and control approach
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Closed-loop reservoir management
• Hypothesis: recovery can be significantly increased by 
changing reservoir management from a ‘batch-type’ to a 
near-continuous model-based controlled activity

• Key elements:
• Optimisation under geological uncertainties
• Data assimilation for frequent updating of system models

• Inspiration:
• Systems and control theory
• Meteorology and oceanography

• A.k.a. real-time reservoir management, quantitative 
reservoir management, computer-assisted reservoir 
management, smart fields, intelligent fields, … 
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Closed-loop reservoir management
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CLRM perspectives

Geoscience-focused
• Maximize subsurface knowledge
• Relevant for field development planning
• Geological model(s) at the core

Production-focused
• Maximize financial outcome
• Relevant for surveillance and intervention
• Flow model(s) at the core
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Open-loop flooding optimisation
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Optimisation techniques
• Global versus local
• Gradient-based versus gradient-free
• Constrained versus non-constrained
• ‘Classical’ versus ‘non-classical’ (genetic algorithms, 

simulated annealing, particle swarms, etc.)
• We use ‘adjoint-based optimal control theory’

• Gradient-based – local optimum
• Computational effort independent of number of controls
• Objective function: ultimate recovery or monetary value
• Controls: injection/production rates, pressures or valve openings 
• Beautiful, but code-intrusive and requires lots of programming

Anyway, the magic isn’t in the method
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12-well example
• 3D reservoir
• High-permeability channels
• 8 injectors, rate-controlled
• 4 producers, BHP-controlled
• Production period of 10 years
• 12 wells x 10 x 12 time steps
gives 1440 optimization parameters

• Optimisation of monetary value J

Van Essen et al., 2006

J = (value of oil – costs of water produced/injected) 
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12-well example
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12-well example
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Why this wouldn’t work

• Real wells are sparse and far apart

• Real wells have more complicated constraints

• Field management is usually production-focused

• Long-term optimisation may jeopardize short-term profit

• Optimal inputs cannot be implemented (too dynamic)

• Production engineers don’t trust reservoir models anyway

• We do not know the reservoir!
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Robust optimisation
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Robust optimization

• Use ensemble of realizations (typically 100)

• Optimize expected value over ensemble

• Single strategy, not 100!

• If necessary include risk aversion (utility function)

• Computationally intensive

Van Essen et al., 2006
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Robust optimisation results
3 control strategies applied to set of 100 realisations:
reactive control, nominal optimisation, robust optimisation

Monetary value (M$)
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Computer-assisted history matching
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Computer-assisted history matching
(data assimilation)
• Uncertain parameters: permeabilities, porosities, fluid 

properties, aquifers, fault positions, horizon depths …
• Data: production (oil, water, pressure), 4D seismics, …
• Very ill-posed problem: many parameters, little info 
• Variational methods – Bayesian framework:
• Ensemble Kalman filtering – sequential methods
• Reservoir-specific methods (e.g. streamlines)
• ‘Non-classical’ methods – simulated annealing, GAs, …
• Monte Carlo methods – MCMC with proxies

Also here, the magic isn’t in the method
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Example, Brugge field

• Brugge field
(SPE workshop on CLRM)

• 10 water injectors
• 20 smart producers
• Production data until 10 yrs
• ‘4D seismics’ after 5 and 10 years 
• 104 prior models (we used 9)
• Optimisation over remaining 20 years
• Question: effect of adding 4D seismics on production forecast?
• Measures: root-mean squared difference between historic (10 yrs) 

and future (20 yrs) production data (oil, water rates)



19100 Years and Beyond, Imperial College 2013

Effect of adding 4D seismics (1)
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Effect of adding 4D seismics (2)
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Effect of adding 4D seismics (3)
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Effect of adding 4D seismics (4)
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Optimization of ‘smart’ horizontal wells
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Question from Shell: How to optimise the valve settings 
over time for a ‘smart’ horizontal water injection well?

Answer (joint TU Delft – Shell research): 
Combine-large scale reservoir simulation 
with adjoint-based optimisation.
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Base case results

• Grouping based on geological features

• Cumulative oil production: 11,47 MMstb
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Alternative 4-group control

• Cumulative oil production: 12,62 MMstb

• Increase of 10,0% (1,15 MMstb)
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System-theoretical concepts

• Controllability of a dynamic system is the ability to 
influence the states through manipulation of the inputs.

• Observability of a dynamic system is the ability to 
determine the states through observation of the outputs.

• Identifiability of a dynamic system is the ability to 
determine the parameters from the input-output behavior.

• Well-defined theory for linear systems. More difficult for 
nonlinear ones.

System model

state (p,S)
parameters (k,,…)

output (pwf ,qw ,qo)input (pwf ,qt)
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System theory – main findings so far
• Controllability, observability and identifiability are very

limited
• Reservoir dynamics ‘lives’ in a state space of a much 

smaller dimension than the number of model grid blocks
• Linear case (pressures only): typical number of relevant 

pressure states: 2 x # of wells
• For fixed wells: the (few) identifiable parameter patterns 

correspond just to the (few) controllable state patterns
• Scope for reduced-order modeling to speed up iterative 

optimisation, history matching, upscaling?
• First attempts: POD – disappointing speed-ups
• Successful: TPWL (Durlofsky et al.)
• Other approaches: DEIM, sparse representations, … in progress 
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System theory – main findings so far
• Controllablity, observability and identifiability are very

limited
• Reservoir dynamics ‘lives’ in a state space of a much 

smaller dimension than the number of model grid blocks
• Linear case (pressures only): typical number of relevant 

pressure states: 2 x # of wells
• For fixed wells: the (few) identifiable parameter patterns 

correspond just to the (few) controllable state patterns

So, do we still need geology?
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System theory – main findings so far

Yes, we very much need geology!
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System theory – main findings so far

• Interpreting the ‘history matched’ results requires 
geological insight

• Understanding optimisation results also requires
geological insight

• Well location-optimisation requires a geological model

• However, we need to focus on the relevant geology:
 Which geological features are identifiable?

 Which geological features influence controllability?

Yes, we very much need geology!
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Conclusions, questions, more work
• Specific optimisation methods less important than

workflow & human interpretation of results
• Use of multiple models to capture uncertainties is 

essential
• Reservoir dynamics lives in low-order space – so what?
• Control-relevant geology – how do we define it?
• Developments: well location/trajectory optimisation, infill 

drilling scheduling, EOR optimisation, big loop, model 
maturation, structural uncertainties, multiple data sources 
(4-D seismics, gravity, EM, passive seismics, …)
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www.citg.tudelft.nl/smart

Questions?


